Abstract
An optically induced interparticle potential, applicable to particles of any shape, is derived in a formulation that accommodates the effects of beam structure. The theory allows the consideration of optical binding interactions in beams of spatially varying irradiance and polarization. Results of specific calculations are exhibited for spherical particles in linearly, circularly, and radially polarized Laguerre–Gaussian beams, leading to the identification of several possible optically induced particle arrangements. The patterning of these optically induced structures is shown to have an identical dependence on the optical wavenumber and spot size at the beam waist.
© 2008 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (3)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (6)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription