Abstract
We present a novel design of a wavelength-selective reflector using a microring resonator integrated with a low-loss, low-crosstalk waveguide crossing. Functioning as a reflective notch filter, it can be used for optical communications and for sensor applications. The device is simulated using the transfer-matrix method combined with a two- dimensional finite-difference mode solver and is fabricated by a CMOS-compatible silicon-on-insulator technology. The measurement shows an extinction ratio greater than and a resonance-wavelength temperature dependence of .
© 2010 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (7)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (5)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription