Abstract
We show efficient generation of mid-IR pulses tunable between 1 and from class femtosecond systems. The concept can be applied to various sources, particularly based on Ti:sapphire and the newly evolving lasers. The mid-IR pulses are generated as the idler of a collinear optical parametric amplifier pumped by the laser fundamental. The seed for this amplifier is the idler of a previous amplification stage pumped with the second harmonic and seeded with a visible continuum. This enhances the energy and allows us to influence the bandwidth of the final output. Pulses with microjoule energy and Fourier limits of are achieved.
© 2011 Optical Society of America
Full Article |
PDF Article
More Like This
Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification
M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella
Opt. Lett. 36(13) 2456-2458 (2011)
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (3)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (1)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription