Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble

Not Accessible

Your library or personal account may give you access

Abstract

We experimentally investigate optical storage with electromagnetically induced transparency in a dense cold Rb85 atomic ensemble. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage efficiency has a saturation value of 50% as OD>50. Our result is consistent with that obtained from hot vapor cell experiments.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Electromagnetically induced transparency in a spin-orbit-coupled finite-temperature cold atomic ensemble

Zhengfeng Hu, Jin-Ming Liu, Chengpu Liu, and Yuzhu Wang
J. Opt. Soc. Am. B 35(11) 2846-2850 (2018)

Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel
Optica 2(4) 353-356 (2015)

Electromagnetically induced transparency in cold rubidium atoms

Min Yan, Edward G. Rickey, and Yifu Zhu
J. Opt. Soc. Am. B 18(8) 1057-1062 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved