Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Extinction coefficient imaging of turbid media using dual structured laser illumination planar imaging

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a technique, named dual structured laser illumination planar imaging (SLIPI), capable of acquiring depth-resolved images of the extinction coefficient. This is achieved by first suppressing the multiply scattered light intensity and then measuring the intensity reduction caused by signal attenuation between two laser sheets separated by Δzmm. Unlike other methods also able to measure this quantity, the presented approach is based solely on side-scattering detection. The main advantages of dual SLIPI is that it accounts for multiple scattering, provides two-dimensional information, and can be applied on inhomogeneous media.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media

E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Aldén, and M. Linne
Opt. Express 19(14) 13647-13663 (2011)

Quantitative measurements of turbid liquids via structured laser illumination planar imaging where absorption spectrophotometry fails

Guy-Oscar Regnima, Thomas Koffi, Olivier Bagui, Abaka Kouacou, Elias Kristensson, Jeremie Zoueu, and Edouard Berrocal
Appl. Opt. 56(13) 3929-3938 (2017)

Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging

Yogeshwar Nath Mishra, Elias Kristensson, and Edouard Berrocal
Opt. Express 22(4) 4480-4492 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved