Abstract
Estimation of the spectral reflectance of a scene is a critical problem in image processing and computer vision applications. Model-based multispectral imaging, one of the spectral reflectance estimation methods, can effectively reconstruct the full spectrum using a small number of camera shots. However, it is based on iterative optimization and, thus, is computationally too intensive. In this Letter, we modify the iterative optimization problem to a closed-form problem using nonnegative principal component analysis. The proposed method can substantially reduce the computational cost while maintaining the accuracy.
©2012 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (5)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (10)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription