Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simulated and measured optical coherence tomography images of human enamel

Not Accessible

Your library or personal account may give you access

Abstract

Optical coherence tomography images of human enamel were simulated and compared to measured images. A Monte Carlo code was implemented, which considered the microstructure of enamel. The prisms, the main scattering structures of the enamel, were described by oscillating cylinders whose scattering functions were obtained by solutions of Maxwell’s equations. The essential features of the measured images including the Hunter–Schreger bands could be explained by the simulations.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system

Yueli Chen, Linda Otis, Daqing Piao, and Quing Zhu
Appl. Opt. 44(11) 2041-2048 (2005)

Characterization of dentin and enamel by use of optical coherence tomography

Xiao-Jun Wang, Thomas E. Milner, Johannes F. de Boer, Yi Zhang, David H. Pashley, and J. Stuart Nelson
Appl. Opt. 38(10) 2092-2096 (1999)

Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method

Igor Meglinski, Mikhail Kirillin, Vladimir Kuzmin, and Risto Myllylä
Opt. Lett. 33(14) 1581-1583 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved