Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Defocus map estimation from a single image via spectrum contrast

Not Accessible

Your library or personal account may give you access

Abstract

We present an effective method for defocus map estimation from a single natural image. It is inspired by the observation that defocusing can significantly affect the spectrum amplitude at the object edge locations in an image. By establishing the relationship between the amount of spatially varying defocus blur and spectrum contrast at edge locations, we first estimate the blur amount at these edge locations, then a full defocus map can be obtained by propagating the blur amount at edge locations over the entire image with a nonhomogeneous optimization procedure. The proposed method takes into consideration not only the affect of light refraction but also the blur texture of an image. Experimental results demonstrate that our proposed method is more reliable in defocus map estimation compared to various state-of-the-art methods.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Handling noise in single image defocus map estimation by using directional filters

Xin Yu, Xiaolin Zhao, Yao Sui, and Li Zhang
Opt. Lett. 39(21) 6281-6284 (2014)

Passive depth estimation using chromatic aberration and a depth from defocus approach

Pauline Trouvé, Frédéric Champagnat, Guy Le Besnerais, Jacques Sabater, Thierry Avignon, and Jérôme Idier
Appl. Opt. 52(29) 7152-7164 (2013)

Depth-based defocus map estimation using off-axis apertures

Eunsung Lee, Eunjung Chae, Hejin Cheong, Semi Jeon, and Joonki Paik
Opt. Express 23(17) 21958-21971 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved