Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Phase aberration compensation in digital holographic microscopy based on principal component analysis

Not Accessible

Your library or personal account may give you access

Abstract

We present an effective, fast, and straightforward phase aberration compensation method in digital holographic microscopy based on principal component analysis. The proposed method decomposes the phase map into a set of values of uncorrelated variables called principal components, and then extracts the aberration terms from the first principal component obtained. It is effective, fully automatic, and does not require any prior knowledge of the object and the setup. The great performance and limited computational complexity make our approach a very attractive and promising technique for compensating phase aberration in digital holography under time-critical environments.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimal principal component analysis-based numerical phase aberration compensation method for digital holography

Jiasong Sun, Qian Chen, Yuzhen Zhang, and Chao Zuo
Opt. Lett. 41(6) 1293-1296 (2016)

Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy

Xiangyu Zhang, Jiasong Sun, Zuxin Zhang, Yao Fan, Qian Chen, and Chao Zuo
Appl. Opt. 58(2) 389-397 (2019)

Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection

Thanh Nguyen, Vy Bui, Van Lam, Christopher B. Raub, Lin-Ching Chang, and George Nehmetallah
Opt. Express 25(13) 15043-15057 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved