Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Etching rate enhancement by shaped femtosecond pulse train electron dynamics control for microchannels fabrication in fused silica glass

Not Accessible

Your library or personal account may give you access

Abstract

The dependence of the etching rate on the ultrafast pulse shaping is observed when microchannels are fabricated in fused silica glass using the method of femtosecond laser irradiation followed by chemical etching. In comparison with the conventional femtosecond pulses, the temporally shaped pulse trains can greatly enhance the etching rate under the same processing conditions. The enhancement is mainly attributed to the localized transient electron dynamics control by shaping the ultrafast pulse, resulting in higher photon absorption efficiency and uniform photomodification zone. Furthermore, processing parameters, including pulse delay and pulse energy distribution ratio, have also been investigated to optimize microchannels fabrication.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication

X. Yan, L. Jiang, X. Li, K. Zhang, B. Xia, P. Liu, L. Qu, and Y. Lu
Opt. Lett. 39(17) 5240-5243 (2014)

Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching

Krishna Chaitanya Vishnubhatla, Nicola Bellini, Roberta Ramponi, Giulio Cerullo, and Roberto Osellame
Opt. Express 17(10) 8685-8695 (2009)

High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching

Zhi Wang, Lan Jiang, Xiaowei Li, Andong Wang, Zhulin Yao, Kaihu Zhang, and Yongfeng Lu
Opt. Lett. 43(1) 98-101 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved