Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generation of correlated photon pairs in micro/nano-fibers

Not Accessible

Your library or personal account may give you access

Abstract

We study the generation of correlated photon pairs via spontaneous four-wave mixing (SFWM) in a 15 cm long micro/nano-fiber (MNF). The MNF is properly fabricated to satisfy the phase-matching condition for generating the signal and idler photon pairs at wavelengths of about 1310 and 851 nm, respectively. Photon-counting measurements yield a coincidence-to-accidental ratio of 530 for a photon production rate of about 0.002 (0.0005) per pulse in the signal (idler) band. We also analyze the spectral information of the signal photons originating from SFWM and Raman scattering (RS). In addition to discovering some unique features of RS, we find the bandwidth of the individual signal photons is much greater than the calculated value for the MNF with homogeneous structure. Our investigations indicate the MNF is a promising candidate for developing the sources of nonclassical light and the spectral property of photon pairs can be used to noninvasively test the diameter and homogeneity of the MNF.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Efficient generation of correlated photon pairs in a microstructure fiber

J. Fan, A. Migdall, and L. J. Wang
Opt. Lett. 30(24) 3368-3370 (2005)

Photon-pair source working in a silicon-based detector wavelength range using tapered micro/nanofibers

Jin-Hun Kim, Yong Sup Ihn, Yoon-Ho Kim, and Heedeuk Shin
Opt. Lett. 44(2) 447-450 (2019)

Generation of correlated photon pairs in a microstructure fiber

J. Fan, A. Dogariu, and L. J. Wang
Opt. Lett. 30(12) 1530-1532 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.