Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simple model for the nonlinear optical response of gases in the transparency region

Not Accessible

Your library or personal account may give you access

Abstract

We present a simple model for the nonlinear optical response of atomic gases for pulses with center wavelengths in the transparency region and peak fields for which ionization is not prevalent. By comparing with simulations based on the Schrödinger equation for a hydrogen atom we demonstrate that the model accurately captures the dispersion of the nonlinear polarization as well as noninstantaneous effects for a variety of photon energies and also a two-color pulse. Our approach should be of utility in simulating near- and mid-infrared pulse propagation in dielectric media for which extreme nonlinear effects can arise.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Metastable electronic states and nonlinear response for high-intensity optical pulses

M. Kolesik, J. M. Brown, A. Teleki, P. Jakobsen, J. V. Moloney, and E. M. Wright
Optica 1(5) 323-331 (2014)

Space-time resolved simulation of femtosecond nonlinear light-matter interactions using a holistic quantum atomic model : Application to near-threshold harmonics

M. Kolesik, E. M. Wright, J. Andreasen, J. M. Brown, D. R. Carlson, and R. J. Jones
Opt. Express 20(14) 16113-16128 (2012)

Universal long-wavelength nonlinear optical response of noble gases

M. Kolesik and E. M. Wright
Opt. Express 27(18) 25445-25456 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved