Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Measurement-device-independent quantum key distribution with modified coherent state

Not Accessible

Your library or personal account may give you access

Abstract

The measurement-device-independent quantum key distribution (MDI-QKD) protocol has been proposed for the purpose of removing the detector side channel attacks. Due to the multiphoton events of coherent states sources, real-life implementations of MDI-QKD protocol must employ decoy states to beat the photon-number-splitting attack. Decoy states for MDI-QKD based on the weak coherent states (WCSs) have been studied recently. In this Letter, we propose to perform MDI-QKD protocol with modified coherent states (MCS) sources. We simulate the performance of MDI-QKD with the decoy states based on MCS sources. And our simulation indicates that both the secure-key rate and transmission distance can be improved evidently with MCS sources. The physics behind this improvement is that the probability of multiphoton events of the MCS is lower than that of WCSs while at the same time the probability of single-photon is higher.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions

H.-L. Yin, W.-F. Cao, Y. Fu, Y.-L. Tang, Y. Liu, T.-Y. Chen, and Z.-B. Chen
Opt. Lett. 39(18) 5451-5454 (2014)

Finite-key analysis of practical decoy-state measurement-device-independent quantum key distribution with unstable sources

Yang Wang, Wan-Su Bao, Chun Zhou, Mu-Sheng Jiang, and Hong-Wei Li
J. Opt. Soc. Am. B 36(3) B83-B91 (2019)

Twin-field quantum key distribution with modified coherent states

Chun-Hui Zhang, Chun-Mei Zhang, and Qin Wang
Opt. Lett. 44(6) 1468-1471 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved