Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Beyond the current noise limit in imaging through turbulent medium

Not Accessible

Your library or personal account may give you access

Abstract

Shift-and-add is an approach employed to mitigate the phenomenon of resolution degradation in images acquired through a turbulent medium. Using this technique, a large number of consecutive short exposures is registered below the coherence time of the atmosphere or other blurring medium. The acquired images are shifted to the position of the brightest speckle and stacked together to obtain high resolution and high signal-to-noise frame. In this Letter, we present a highly efficient method for determination of frame shifts, even if in a single frame the object cannot be distinguished from the background noise. The technique utilizes our custom genetic algorithm, which iteratively evolves a set of image shifts. We used the maximal energy of stacked images as an objective function for shifts estimation and validate the efficiency of the method on simulated and real images of simple and complex sources. Obtained results confirmed that our proposed method allows for the recovery of spatial distribution of objects even only 2% brighter than their background. The presented approach extends significantly current limits of image reconstruction with the use of shift-and-add method. The applications of our algorithm include both the optical and the infrared imaging. Our method may be also employed as a digital image stabilizer in extremely low light level conditions in professional and consumer applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast diffraction-limited image recovery through turbulence via subsampled bispectrum analysis

Byungjae Hwang, Taeseong Woo, and Jung-Hoon Park
Opt. Lett. 44(24) 5985-5988 (2019)

Estimation of Cn2 based on scintillation of fixed targets imaged through atmospheric turbulence

Damián Gulich, Gustavo Funes, Darío Pérez, and Luciano Zunino
Opt. Lett. 40(23) 5642-5645 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved