Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Self-healing organic-dye-based random lasers

Not Accessible

Your library or personal account may give you access

Abstract

One of the primary difficulties in the implementation of organic-dye-based random lasers is the tendency of organic dyes to irreversibly photodecay. In this Letter, we report the observation of “reversible” photodegradation in a Rhodamine 6G and ZrO2 nanoparticle-doped polyurethane random laser. We find that during degradation, the emission broadens, redshifts, and decreases in intensity. After degradation, the system is observed to self-heal leading to the emission returning to its pristine intensity, giving a recovery efficiency of 100%. While the peak intensity fully recovers, the process is not strictly “reversible”, as the emission after recovery is still found to be broadened and redshifted. The combination of the peak emission fully recovering and the broadening of the emission leads to a remarkable result: the random laser cycled through degradation, and recovery has a greater integrated emission intensity than the pristine system.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Wavelength dependence of reversible photodegradation of disperse orange 11 dye-doped PMMA thin films

Benjamin R. Anderson, Sheng-Ting Hung, and Mark G. Kuzyk
J. Opt. Soc. Am. B 32(6) 1043-1049 (2015)

Emission polarization of random lasers in organic dye solutions

Sebastian Knitter, Michael Kues, and Carsten Fallnich
Opt. Lett. 37(17) 3621-3623 (2012)

Influence of an electric field on photodegradation and self-healing in disperse orange 11 dye-doped PMMA thin films

Benjamin Anderson, Sheng-Ting Hung, and Mark G. Kuzyk
J. Opt. Soc. Am. B 30(12) 3193-3201 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.