Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of DSP-based nonlinear equalizers for intra-channel nonlinearity compensation in coherent optical OFDM

Not Accessible

Your library or personal account may give you access

Abstract

A novel versatile digital signal processing (DSP)-based equalizer using support vector machine regression (SVR) is proposed for 16-quadrature amplitude modulated (16-QAM) coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and experimentally compared to traditional DSP-based deterministic fiber-induced nonlinearity equalizers (NLEs), namely the full-field digital back-propagation (DBP) and the inverse Volterra series transfer function-based NLE (V-NLE). For a 40 Gb/s 16-QAM CO-OFDM at 2000 km, SVR-NLE extends the optimum launched optical power (LOP) by 4 dB compared to V-NLE by means of reduction of fiber nonlinearity. In comparison to full-field DBP at a LOP of 6 dBm, SVR-NLE outperforms by 1dB in Q-factor. In addition, SVR-NLE is the most computational efficient DSP-NLE.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based nonlinear equalization

Elias Giacoumidis, Son T. Le, Mohammad Ghanbarisabagh, Mary McCarthy, Ivan Aldaya, Sofien Mhatli, Mutsam A. Jarajreh, Paul A. Haigh, Nick J. Doran, Andrew D. Ellis, and Benjamin J. Eggleton
Opt. Lett. 40(21) 5113-5116 (2015)

Compensation of nonlinear distortion in coherent optical OFDM systems using a MIMO deep neural network-based equalizer

Ivan Aldaya, Elias Giacoumidis, Athanasios Tsokanos, Mutsam Jarajreh, Yannuo Wen, Jinlong Wei, Gabriel Campuzano, Marcelo L. F. Abbade, and Liam P. Barry
Opt. Lett. 45(20) 5820-5823 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.