Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system

Not Accessible

Your library or personal account may give you access

Abstract

We experimentally demonstrate and evaluate the performance of an analog signal transmission system with photonic integrated optical vortex emitter and 3.6-km few-mode fiber (FMF) link using orbital angular momentum (OAM) modes. The fabricated photonic integrated device is capable of emitting vector optical vortices carrying well-defined and quantized OAM modes with topological charge l=2 and 2. After propagating through 3.6-km FMF, we measure and assess the spurious free dynamic range of the second-order harmonic distortion. Moreover, we study the impact of nonlinearity-induced resonance wavelength shift of the optical vortex emitter on the analog link performance as increasing the input optical power.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Demonstration of analog links using spatial modes in km-scale few mode fiber

Jing Du, Dequan Xie, Chen Yang, and Jian Wang
Opt. Express 25(4) 3613-3620 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved