Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Angularly dense comb-like enhanced absorption of graphene monolayer with attenuated-total-reflection configuration

Not Accessible

Your library or personal account may give you access

Abstract

A multiline absorber based on the excitation of guided-mode resonance of one-dimensional photonic crystals (1D-PhCs), including a surface graphene monolayer under the attenuated-total-reflection configuration, is proposed and demonstrated. By carefully designing the structure parameters of the 1D-PhCs, the guided mode can be modulated by the periodic distribution of the refractive index. Our results reveal that the critical coupling of the guided resonance in periodical PhCs to graphene produces the perfect absorption. The number of absorption peaks within the photonic band corresponds to the number of unit cells. An ultrahigh Q-factor value of 4.75×106 is obtained at resonance with unity absorption, which could serve as a promising replacement of metallic thin film as a sensor probe for future biosensing applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced absorption of graphene monolayer with a single-layer resonant grating at the Brewster angle in the visible range

Gaige Zheng, Haojing Zhang, Linhua Xu, and Yuzhu Liu
Opt. Lett. 41(10) 2274-2277 (2016)

Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene

Xi Wang, Yanzhao Liang, Leiming Wu, Jun Guo, Xiaoyu Dai, and Yuanjiang Xiang
Opt. Lett. 43(17) 4256-4259 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved