Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

On-grating graphene surface plasmons enabling spatial differentiation in the terahertz region

Not Accessible

Your library or personal account may give you access

Abstract

We propose a graphene-on-grating nanostructure to enable second-order spatial differentiation computation in the terahertz (THz) region. The differentiation operation is based on the interference between the direct reflected field and the leakage of two excited surface plasmon polaritons counter-propagating along the graphene sheet. With the spatial coupled-mode theory, we derive that the requirement for the second-order spatial differentiation is the critical coupling condition. We numerically demonstrate such an analog computation with Gaussian beams. It shows that the spatial bandwidth of the proposed differentiator is large enough such that even when the waist radius of the Gaussian beam is as narrow as w0=0.68λ (λ is the free-space wavelength), the accuracy of the differentiator is higher than 95%. The proposed differentiator is ultra-compact, with a thickness less than 0.1λ, and useful for real-time imaging applications in THz security detections.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Time response of plasmonic spatial differentiators

Jiahao Zhang, Qianwen Ying, and Zhichao Ruan
Opt. Lett. 44(18) 4511-4514 (2019)

Generation of ultra-wideband achromatic Airy plasmons on a graphene surface

Chunying Guan, Tingting Yuan, Rang Chu, Yize Shen, Zheng Zhu, Jinhui Shi, Ping Li, Libo Yuan, and Gilberto Brambilla
Opt. Lett. 42(3) 563-566 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.