Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generation of frequency degenerate twin beams in 85Rb vapor

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate a new phase-matching geometry for four-wave mixing processes in hot Rb85 vapor, in which all four fields propagate in different directions but two of them are degenerate in frequency. When used as a parametric amplifier with an injected seed, two types of quantum mechanically correlated twin-beam states, either frequency degenerate or nondegenerate, can be generated. The quantum noise reduction in the intensity difference is almost 7 dB for the nondegenerate type and nearly 5 dB for the degenerate type. The spatial nondegeneracy of the four waves allows a variety of configurations of parametric processes, leading to flexible control for both phase insensitive and sensitive parametric amplification. The spatially nondegenerate but frequency degenerate four-wave mixing process will find wide applications in quantum metrology, quantum communication, and quantum information of continuous variables.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor

Rong Ma, Wei Liu, Zhongzhong Qin, Xiaolong Su, Xiaojun Jia, Junxiang Zhang, and Jiangrui Gao
Opt. Lett. 43(6) 1243-1246 (2018)

Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett
Opt. Express 17(19) 16722-16730 (2009)

Experimental observation of quantum correlations in four-wave mixing with a conical pump

Leiming Cao, Jinjian Du, Jingliang Feng, Zhongzhong Qin, Alberto M. Marino, Mikhail I. Kolobov, and Jietai Jing
Opt. Lett. 42(7) 1201-1204 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved