Abstract

Plasma deposition techniques like ion-beam-sputtering (IBS) are state of the art to manufacture high quality optical components for laser applications. Besides the well optimized process and monitoring systems, the coating material selection is integral to achieve optimum optical performances. Applying the IBS technology, an approach is presented to create novel materials by the direct application of binary oxides in a quantizing structure. By reducing the physical thickness of the high refractive index material to a few nm, within a classical high-low index stack, the electron confinement can be changed. Optical characterizations of the manufactured samples with decreasing quantum well thicknesses result in an increasing blue shift of the absorption gap and offer a method to approximate the effective mass of the high refractive index material in conjunction with theoretical models. Laser-induced damage threshold tests of coating samples prepared with different well thicknesses indicate an increase of the measured threshold values with optical gap energy.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhancement of the damage resistance of ultra-fast optics by novel design approaches

Thomas Willemsen, Marco Jupé, Mark Gyamfi, Sebastian Schlichting, and Detlev Ristau
Opt. Express 25(25) 31948-31959 (2017)

Quantizing nanolaminates as versatile materials for optical interference coatings

Morten Steinecke, Holger Badorreck, Marco Jupé, Thomas Willemsen, Liu Hao, Lars Jensen, and Detlev Ristau
Appl. Opt. 59(5) A236-A241 (2020)

Study of a SiGeSn/GeSn/SiGeSn structure toward direct bandgap type-I quantum well for all group-IV optoelectronics

Seyed Amir Ghetmiri, Yiyin Zhou, Joe Margetis, Sattar Al-Kabi, Wei Dou, Aboozar Mosleh, Wei Du, Andrian Kuchuk, Jifeng Liu, Greg Sun, Richard A. Soref, John Tolle, Hameed A. Naseem, Baohua Li, Mansour Mortazavi, and Shui-Qing Yu
Opt. Lett. 42(3) 387-390 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics