Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Silicon-on-insulator microring resonator sensor based on an amplitude comparison sensing function

Not Accessible

Your library or personal account may give you access

Abstract

A novel, highly sensitive integrated sensor based on a silicon-on-insulator microring resonator is proposed and experimentally demonstrated. To achieve a fast-response and cost-effective sensing system, the new structure establishes a linear amplitude comparison sensing function (ACSF) by monitoring the optical powers from both the through port and drop port of an add–drop microring resonator simultaneously, where the contrast of the two ports eliminates the effect of unexpected power fluctuation of the input laser on sensor performance. A highly enhanced linear relationship between the resonant wavelength shift and the ACSF value is achieved with an R-squared value over 0.99. A proof-of-concept experiment for temperature sensing demonstrates an almost constant ACSF with only ±0.9% discrepancy, while the laser power is varied between 0 dBm and 7dBm.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Optofluidic biomolecule sensors based on a-Si:H microrings embedded in silicon–glass microchannels

T. Lipka, L. Moldenhauer, L. Wahn, and H. K. Trieu
Opt. Lett. 42(6) 1084-1087 (2017)

Temperature-insensitive optical sensors based on two cascaded identical microring resonators

Guoshuai Su, Mingyu Li, Zhiping Yang, Jiayi Xie, Yuxia Song, and Jian-Jun He
Opt. Lett. 47(17) 4327-4330 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.