Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid Monte Carlo simulation with ray tracing for fluorescence measurements in turbid media

Not Accessible

Your library or personal account may give you access

Abstract

We present a hybrid Monte Carlo simulation method with geometrical ray tracing (hMC-GRT) to model fluorescence excitation and detection in turbid media by optical imaging or spectroscopy systems employing a variety of optical components. hMC-GRT computational verification was achieved via reflectance and fluorescence simulations on epithelial tissue models in comparison with a standard Monte Carlo code. The mean difference between the two simulations was less than 5%. hMC-GRT experimental verification employed depth-sensitive steady-state fluorescence measurements using an aspherical lens on two-layered tissue phantoms. hMC-GRT predictions agreed well with experimental results, achieving less than 3.5% error for measurements at the phantom surface. Verification results demonstrate that the hMC-GRT simulation has the potential to become a useful computational toolbox for designing tissue fluorescence imaging and spectroscopy systems. In addition, the hMC-GRT approach enables a wide variety of applications for computational modeling of fluorescence in turbid media. The source codes are available at https://github.com/ubioptronics/hMC-GRT.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model

Yong Deng, Zhaoyang Luo, Xu Jiang, Wenhao Xie, and Qingming Luo
Opt. Lett. 40(13) 3129-3132 (2015)

Supplementary Material (1)

NameDescription
Code 1       Hybrid Monte Carlo simulation with geometrical ray tracing (hMC-GRT).

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved