Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Innovative scheme for high-repetition-rate imaging of CN radical

Abstract

We have employed, to the best of our knowledge, a novel excitation scheme to perform the first high-repetition-rate planar laser-induced fluorescence (PLIF) measurements of a CN radical in combustion. The third harmonic of a Nd:YVO4 laser at 355 nm due to its relatively large linewidth overlaps with several R branch transitions in a CN ground electronic state. Therefore, the 355 nm beam was employed to directly excite the CN transitions with good efficiency. The CN measurements were performed in premixed CH4N2O flames with varying equivalence ratios. A detailed characterization of the high-speed CN PLIF imaging system is presented via its ability to capture statistical and dynamical information in these premixed flames. Single-shot CN PLIF images obtained over a HMX pellet undergoing self-supported deflagration are presented as an example of the imaging system being applied towards characterizing the flame structure of energetic materials.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
20  kHz CH2O and OH PLIF with stereo PIV

Stephen D. Hammack, Campbell D. Carter, Aaron W. Skiba, Christopher A. Fugger, Josef J. Felver, Joseph D. Miller, James R. Gord, and Tonghun Lee
Opt. Lett. 43(5) 1115-1118 (2018)

Burst-mode OH/CH2O planar laser-induced fluorescence imaging of the heat release zone in an unsteady flame

Ulrich Retzer, Rongchao Pan, Thomas Werblinski, Franz J. T. Huber, Mikhail N. Slipchenko, Terrence R. Meyer, Lars Zigan, and Stefan Will
Opt. Express 26(14) 18105-18114 (2018)

Continuous hydroxyl radical planar laser imaging at 50  kHz repetition rate

Stephen Hammack, Campbell Carter, Clemens Wuensche, and Tonghun Lee
Appl. Opt. 53(23) 5246-5251 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.