Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Integrated optofluidic micro-pumps in micro-channels with uniform excitation of a polarization rotating beam

Not Accessible

Your library or personal account may give you access

Abstract

We report an integrated optofluidic micro-pump with a pair of mirrored stirrers of circulating micro-beads in a micro-channel, driven by plasmon-assisted optical manipulation with the excitation of a polarization rotating beam. H-shaped apertures (HSAs) on a gold surface produce strong near-field hot spots when they are illuminated with a light beam polarized parallel to the long axis of “H.” With the rotating of excitation polarization, loops of HSAs with gradually varied orientations can produce the circulation of hot spots, which can further trap micro-beads and make them go around in circles. A different sequence of HSAs can produce a different direction and phase of bead rotation, even under uniform excitation. A pair of mirrored circulations of micro-beads in a micro-channel can induce very effective directional flow. Through numerical modeling, we find that a group of non-synchronized multi-phase mirrored circulations can produce a very uniform flow rate with a speed of more than 10 micrometers per second. These micro-pumps can be heavily integrated and activated by a single beam, while the flow direction of each pump can be regulated, even under a uniform excitation. Our design proposes a new approach for the flow pumping in micro- and nanofluidic devices.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-dimensional arbitrary nano-manipulation on a plasmonic metasurface

Min Jiang, Guanghui Wang, Wenhao Xu, Wenbin Ji, Ningmu Zou, Ho-pui Ho, and Xuping Zhang
Opt. Lett. 43(7) 1602-1605 (2018)

Multi-channel velocity multiplexing of single virus detection on an optofluidic chip

Jennifer A. Black, Vahid Ganjalizadeh, Joshua W. Parks, and Holger Schmidt
Opt. Lett. 43(18) 4425-4428 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved