Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Four-port SNAP microresonator device

Not Accessible

Your library or personal account may give you access

Abstract

It is well known from quantum mechanics that the transmission amplitude of a symmetric double-barrier structure can approach unity at the resonance condition. A similar phenomenon is observed in optics for light which propagates between two waveguides weakly coupled through a microresonator. Examples of microresonators used for this purpose include ring, photonic crystal, toroidal, and bottle microresonators. However, ring and photonic crystal photonic circuits, once fabricated, cannot be finely tuned to arrive at the mentioned resonant condition. In turn, it is challenging to predictably adjust coupling to toroidal and bottle microresonators by translating the input–output microfibers, since the modes of these resonators are difficult to separate spatially. Here we experimentally demonstrate a four-port micro-device based on a SNAP microresonator introduced at the surface of an optical fiber. The eigenmodes and corresponding eigenwavelengths of this resonator are clearly identified for both polarization states by the spectrograms measured along the length of the fiber. This allows us to choose the resonant wavelength and simultaneously determine the positions of the input–output microfiber tapers to arrive at the required resonance condition.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
SNAP microresonators introduced by strong bending of optical fibers

Daria Bochek, Nikita Toropov, Ilya Vatnik, Dmitry Churkin, and Misha Sumetsky
Opt. Lett. 44(13) 3218-3221 (2019)

Rectangular SNAP microresonator fabricated with a femtosecond laser

Qi Yu, Sajid Zaki, Yong Yang, Nikita Toropov, Xuewen Shu, and Misha Sumetsky
Opt. Lett. 44(22) 5606-5609 (2019)

Tunable SNAP microresonators via internal ohmic heating

Dashiell L. P. Vitullo, Sajid Zaki, Gabriella Gardosi, Brian J. Mangan, Robert S. Windeler, Michael Brodsky, and Misha Sumetsky
Opt. Lett. 43(17) 4316-4319 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.