Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatially resolved random-access pump-probe microscopy based on binary holography

Not Accessible

Your library or personal account may give you access

Abstract

In this Letter, we present a spatially resolved pump-probe microscope based on a digital micromirror device (DMD). The microscope system enables the measurements of ultrafast transient processes at arbitrarily selected regions in a 3-D specimen. To achieve random-access scanning, the wavefront of the probe beam is modulated by the DMD via binary holography. By switching the holograms stored in the DMD memory, the laser focus can be rapidly moved in space in a discrete fashion. The microscope system has a field of view of 65×130×155μm3 in the x, y, and z axes, respectively; and a scanning speed of 8 kHz which is limited by the response time of the lock-in amplifier. To demonstrate the pump-probe system, we measured the ultrafast transient reflectivity of 2-D gold patterns on a silicon substrate and on silicon nitride cantilever beams. The results show an excellent signal-to-noise ratio and spatial-temporal resolution, as well as the 3-D random scanning capability. The new pump-probe microscope is a versatile instrument to characterize ultrafast 3-D phenomena with high spatial and temporal resolution, e.g., the propagation of localized surface plasmon resonance on curved surfaces.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Compressive sensing for fast 3-D and random-access two-photon microscopy

Chenyang Wen, Mindan Ren, Fu Feng, Wang Chen, and Shih-Chi Chen
Opt. Lett. 44(17) 4343-4346 (2019)

Digital micromirror device-based two-photon microscopy for three-dimensional and random-access imaging

Qiang Geng, Chenglin Gu, Jiyi Cheng, and Shih-chi Chen
Optica 4(6) 674-677 (2017)

Ultrafast axial scanning for two-photon microscopy via a digital micromirror device and binary holography

Jiyi Cheng, Chenglin Gu, Dapeng Zhang, Dien Wang, and Shih-Chi Chen
Opt. Lett. 41(7) 1451-1454 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.