Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermally stable access to microresonator solitons via slow pump modulation

Abstract

Temporal dissipative Kerr solitons (DKSs) in microresonators provide ultra-short optical pulses and low-noise frequency combs with gigahertz to terahertz repetition rates. Owing to their unique properties, they have found application in fields, including optical communications, rapid laser ranging, and optical precision spectroscopy. However, due to the thermal instability encountered when entering the DKS regime, the stable generation of solitons remains challenging for many systems and usually requires rapid actuation of the pump laser detuning, pulsed driving, additional lasers, a particular mode structure and/or active feedback loops to stabilize the system. Here we show that slow pump modulation can remove the thermal instability and enable passively stable soliton states that can be readily accessed via arbitrarily slow laser tuning, thereby greatly reducing the technical complexity of stable DKS generation.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Robust soliton crystals in a thermally controlled microresonator

Weiqiang Wang, Zhizhou Lu, Wenfu Zhang, Sai T. Chu, Brent E. Little, Leiran Wang, Xiaoping Xie, Mulong Liu, Qinghua Yang, Lei Wang, Jianguo Zhao, Guoxi Wang, Qibing Sun, Yuanshan Liu, Yishan Wang, and Wei Zhao
Opt. Lett. 43(9) 2002-2005 (2018)

Thermal control of a Kerr microresonator soliton comb via an optical sideband

Kenji Nishimoto, Kaoru Minoshima, Takeshi Yasui, and Naoya Kuse
Opt. Lett. 47(2) 281-284 (2022)

Thermally controlled comb generation and soliton modelocking in microresonators

Chaitanya Joshi, Jae K. Jang, Kevin Luke, Xingchen Ji, Steven A. Miller, Alexander Klenner, Yoshitomo Okawachi, Michal Lipson, and Alexander L. Gaeta
Opt. Lett. 41(11) 2565-2568 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.