Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Empirical demonstration of CO2 detection using macroporous silicon photonic crystals as selective thermal emitters

Not Accessible

Your library or personal account may give you access

Abstract

This study describes the detection of CO2 using macroporous silicon photonic crystals as thermal emitters. It demonstrates that the reduction of structural nonhomogeneities leads to an improvement of the photonic crystals’ emission. Narrow emission bands (Q120) located within the R-branch of carbon dioxide were achieved. Measurements were made using a deuterated triglycine sulfate photodetector and the photonic crystals, heated to 400°C, as selective emitters. A gas cell with a CO2 concentration between 0 ppm and 10,000 ppm was installed in the center. Results show high sensibility and selectivity that could be used in current nondispersive infrared devices for improving their features. These results open the door to narrowband emission in the mid-infrared for spectroscopic gas detection.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Thermal emission of macroporous silicon chirped photonic crystals

Moisés Garín, Trifon Trifonov, David Hernández, Ángel Rodriguez, and Ramón Alcubilla
Opt. Lett. 35(20) 3348-3350 (2010)

Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide

Floria Ottonello-Briano, Carlos Errando-Herranz, Henrik Rödjegård, Hans Martin, Hans Sohlström, and Kristinn B. Gylfason
Opt. Lett. 45(1) 109-112 (2020)

Tamm plasmon selective thermal emitters

Zih-ying Yang, Satoshi Ishii, Takahiro Yokoyama, Thang Duy Dao, Mao-guo Sun, Tadaaki Nagao, and Kuo-ping Chen
Opt. Lett. 41(19) 4453-4456 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.