Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Plasmonic fiber optic hydrogen sensor using oxygen defects in nanostructured molybdenum trioxide film

Not Accessible

Your library or personal account may give you access

Abstract

Hydrogen is one of the most promising candidates for fulfilling the next energy demands in transportation, aerospace, heating, and power generation. Due to its highly explosive nature, hydrogen leakage sensors are considered a critical industrial need. We propose a room-temperature, high-sensitivity hydrogen sensor using oxygen defect-induced plasmonic features. The proposed sensing probe utilizes nanostructured α-MoO3 thin film as the sensing material in which free carriers and plasmonic properties are induced in response to hydrogen exposure. A notable blue spectral shift of 70.6 nm is observed in response to hydrogen gas exposure from 150 ppm to 2000 ppm, which confirms the sensor’s capability for efficient detection of low hydrogen concentrations. The sensor’s sensitivity, linearity, and reversibility are experimentally investigated through a simple optical setup.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Palladium-coated plasmonic optical fiber gratings for hydrogen detection

Shunshuo Cai, Álvaro González-Vila, Xuejun Zhang, Tuan Guo, and Christophe Caucheteur
Opt. Lett. 44(18) 4483-4486 (2019)

Ultra-high sensitive optical fiber hydrogen sensor using self-referenced demodulation method and WO3-Pd2Pt-Pt composite film

Jixiang Dai, Wen Peng, Gaopeng Wang, Feng Xiang, Yuhuan Qin, Min Wang, Yutang Dai, Minghong Yang, Hui Deng, and Pengcheng Zhang
Opt. Express 25(3) 2009-2015 (2017)

Fiber optic surface plasmon resonance sensor based on a silver-coated large-core suspended-core fiber

Xian Zhang, Xiao-Song Zhu, and Yi-Wei Shi
Opt. Lett. 44(18) 4550-4553 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved