Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Distributed detection of hydrogen and deuterium diffusion into a single-mode optical fiber with chirped-pulse phase-sensitive optical time-domain reflectometry

Not Accessible

Your library or personal account may give you access

Abstract

For some infrastructures such as oil and gas extraction boreholes or radioactive waste repositories, where distributed optical fiber sensors are employed to grant the safety of the facilities, the presence of gas species such as hydrogen or deuterium is one of the most relevant parameters to monitor. The possibility of employing the same kind of sensors for this purpose is of special interest, reducing the cost by employing a single interrogator, able to measure multiple parameters by simply employing adequate sensing fibers. To meet this goal, we present here a chemical sensor based on chirped-pulse phase-sensitive optical time-domain reflectometry (CP-φOTDR), which is able to detect these species while they diffuse into the silica fiber. The ability of chirped-pulse φOTDR to measure a change in refractive index with sensitivity around 108 has allowed determining hydrogen concentration with accuracy on the order of 103mol/m3 and spatial resolution 6m. Another experiment provides an indirect measurement of the solubility of deuterium in a standard telecom-grade optical fiber, which is found to be around 1.47×1024m3/bar.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Continuous chirped-wave phase-sensitive optical time domain reflectometry

Jialin Jiang, Zinan Wang, Zitan Wang, Zijie Qiu, Chunye Liu, and Yunjiang Rao
Opt. Lett. 46(3) 685-688 (2021)

High-resolution distributed shape sensing using phase-sensitive optical time-domain reflectometry and multicore fibers

Łukasz Szostkiewicz, Marcelo A. Soto, Zhisheng Yang, Alejandro Dominguez-Lopez, Itxaso Parola, Krzysztof Markiewicz, Anna Pytel, Agnieszka Kołakowska, Marek Napierała, Tomasz Nasiłowski, and Luc Thevenaz
Opt. Express 27(15) 20763-20773 (2019)

Distributed high-temperature sensing based on optical frequency domain reflectometry with a standard single-mode fiber

Huajian Zhong, Cailing Fu, Pengfei Li, Bin Du, Chao Du, Yanjie Meng, and Yiping Wang
Opt. Lett. 47(4) 882-885 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved