Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface-enhanced Raman scattering of monolayer transition metal dichalcogenides on Ag nanorod arrays

Abstract

In this work, we studied surface-enhanced Raman scattering (SERS) of MS2 (M=Mo, W) monolayers that were transferred onto Ag nanorod arrays. Compared to the suspended monolayers, the Raman intensity of monolayers on an Ag nanorod substrate was strongly enhanced for both in-plane and out-of-plane vibration modes: up to 8 (5) for E2g and 20 (23) for A1g in MoS2 (WS2). This finding reveals a promising SERS substrate for achieving uniform and strong enhancement for two-dimensional materials in the applications of optical detecting and sensing.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons

Ruibin Lin, Liang Hu, Jinzhang Wang, Wenjing Zhang, Shuangchen Ruan, and Yu-Jia Zeng
Opt. Lett. 43(10) 2244-2247 (2018)

Coulomb enhancement of high harmonic generation in monolayer transition metal dichalcogenides

Jörg Hader, Josefine Neuhaus, Jerome V. Moloney, and Stephan W. Koch
Opt. Lett. 48(8) 2094-2097 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.