Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Avalanche-like behavior of up-conversion luminescence by nonlinear coupling of pumping rates

Not Accessible

Your library or personal account may give you access

Abstract

Here we report and discuss the avalanche-like up-conversion behavior in absence of the avalanche. We experimentally observed significant changes in the slope of the curve for the intensity dependence of up-conversion luminescence of erbium ions in the green band (520–560 nm) on the pump intensity of the diode laser. Such changes are typical for the photon avalanche. However, the concentration of erbium ions is insufficient for an efficient exchange of energy between them, and the excitation of a photon avalanche is not possible. Using a simple three-level approximation of the up-conversion process model, we have shown that the observed avalanche-like luminescence process can also occur in the absence of a photon avalanche due to the nonlinear relation between the efficiency of two pumping channels of erbium ions caused by the intensity dependence of the pump spectrum.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Non-stationary testing of avalanche-like behavior of up-conversion luminescence

M. V. Korolkov
J. Opt. Soc. Am. B 37(11) 3239-3242 (2020)

In-fiber temperature sensor based on green up-conversion luminescence in an Er3+-Yb3+co-doped tellurite glass microsphere

Meng Zhang, Angzhen Li, Jibo Yu, Xiaosong Lu, Shunbin Wang, Elfed Lewis, Gerald Farrell, Libo Yuan, and Pengfei Wang
Opt. Lett. 44(13) 3214-3217 (2019)

Wide-range ratiometric upconversion luminescence thermometry based on non-thermally coupled levels of Er in high-temperature cubic phase NaYF4: Yb, Er

Raheel Ahmed Janjua, Umer Farooq, Rucheng Dai, Zhongping Wang, and Zengming Zhang
Opt. Lett. 44(19) 4678-4681 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.