Abstract
The information that is leaked to an eavesdropper during the error reconciliation phase of quantum key distribution (QKD) protocols limits the maximum bit error rate (BER) of a system. In a standard QKD protocol, parity bits are transmitted over an authenticated noiseless channel, to which Eve has access. This Letter presents the concept of using a covert classical communication channel to transmit the parity bits between Alice and Bob without Eve gaining information of the transmitted parity bits. This allows for higher secure key generation rates and operation of a QKD system in which the BER exceeds the limit of the standard protocol. This concept is then applied to a practical free-space optical system that contains multiple parallel channels, where channel loss, crosstalk, atmospheric turbulence effects, and noise are considered.
© 2019 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (4)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (3)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription