Abstract
Today, nanophotonics still lacks components for modulation that can be easily implementable in existing silicon-on-insulator (SOI) technology. Chalcogenide phase change materials (PCMs) are promising candidates for tuning in the near infrared: at the nanoscale, thin layers can provide enough contrast to control the optical response of a nanostructure. Moreover, all-dielectric metamaterials allow for resonant behavior without having ohmic losses in the telecom range. Here, a novel hybridization of a SOI-based metamaterial with PCM GeTe is experimentally investigated. A metamaterial based on Si nanorods, covered by a thin layer of GeTe, is designed and fabricated. Switching GeTe from amorphous to crystalline leads to a rather high resonance-governed reflection contrast at 1.55 μm. Additional confocal Raman imaging is done to differentiate the crystallized zones of the metamaterials’ unit cell. The findings are in good agreement with numerical analysis and show good perspectives of all-dielectric tunable near-infrared nanophotonics.
© 2019 Optical Society of America
Full Article | PDF ArticleMore Like This
Yiqun Zhao, Libin Tang, Shengyi Yang, Kar Seng Teng, and Shu Ping Lau
Opt. Lett. 45(5) 1108-1111 (2020)
Lei Zhao, Xiao Yang, Qinglin Niu, Zhihong He, and Shikui Dong
Opt. Lett. 44(15) 3885-3888 (2019)
E. Petronijevic and C. Sibilia
Opt. Express 24(26) 30411-30420 (2016)