Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Soft surfaces and enhanced nonlinearity enabled via epsilon-near-zero media doped with zero-area perfect electric conductor inclusions

Abstract

Introducing a dielectric inclusion inside an epsilon-near-zero (ENZ) host has been shown to dramatically affect the effective permeability of the host for a TM-polarized incident wave, a concept coined as photonic doping [Science 355, 1058 (2017) [CrossRef]  ]. Here, we theoretically study the prospect of doping the ENZ host with infinitesimally thin perfect electric conductor (PEC) inclusions, which we call “zero-area” PEC dopants. First, we theoretically demonstrate that zero-area PEC dopants enable the design of soft surfaces with an arbitrary cross-sectional geometry. Second, we illustrate the possibility of engineering the PEC dopants with the goal of transforming the electric field distribution inside the ENZ while maintaining a spatially invariant magnetic field. We exploit this property to enhance the effective nonlinearity of the ENZ host.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs

Ehsan Nahvi, Mario J. Mencagli, and Nader Engheta
Opt. Lett. 47(6) 1319-1322 (2022)

Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides

Ying Li and Christos Argyropoulos
Opt. Lett. 43(8) 1806-1809 (2018)

Omnidirectional field enhancements drive giant nonlinearities in epsilon-near-zero waveguides

Gordon Han Ying Li, C. Martijn de Sterke, and Alessandro Tuniz
Opt. Lett. 45(23) 6514-6517 (2020)

Supplementary Material (1)

NameDescription
Supplement 1       Supplementary Materials

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved