Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiation-resistant flatness-shaped spectrum erbium-doped photonic crystal fiber source employing multiple self-compensating methods

Not Accessible

Your library or personal account may give you access

Abstract

A novel scheme of radiation-resistant flatness-shaped spectrum erbium-doped photonic crystal fiber source (EDPCFS) employing multiple self-compensating methods is proposed. We first develop a sort of radiation-resistant highly erbium-doped photonic crystal fiber (EDPCF) with the cutoff wavelength of 520 nm, which ensures that the pump light and most energy of the green light from upconversion of ${{\rm Er}^{3 +}}$ could participate in photo-annealing to reduce the radiation-induced background attenuation (RIBA) of the EDPCFS under radiation environment. To minimize the spectrum variation from radiation-induced active band attenuation (RIABA), the original spectrum is optimized employing an improved double pumped backward (DPB) configuration. With a gain flattening filter and closed-loop feedback control technology, a radiation-resistant EDPCFS with a linewidth larger than 41 nm is achieved, and it experimentally demonstrates a significantly improved mean-wavelength stability of 0.42 ppm/krad with the output power attenuation of 0.09 dB under $\gamma$-irradiation of 200 krad. The novel radiation-resistant EDPCFS proposed is quite feasible for strategic interferometric fiber-optic gyroscopes (IFOGs) working in high-dose radiation environment.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Rapid and precise compensation of scale factor in a fiber-optic gyroscope with a twin-peaks source

Weiran Wu, Tuohua Xian, Guodong Hu, and Kejiang Zhou
Opt. Lett. 45(11) 3107-3110 (2020)

Radiation-resistant cerium co-doped erbium-doped fibers for C- and L-band amplifiers in a high-dose gamma-radiation environment

Ziwei Zhai, Arindam Halder, Daniel Negut, and Jayanta K. Sahu
Opt. Express 31(23) 38910-38920 (2023)

High-stability erbium-doped photonic crystal fiber source

Xu Wu, Shuang-chen Ruan, Cheng-xiang Liu, and Li Zhang
Appl. Opt. 51(13) 2277-2281 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.