Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generation of broadband circularly polarized deep-ultraviolet pulses in hollow capillary fibers

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate an efficient scheme for the generation of broadband, high-energy, circularly polarized femtosecond laser pulses in the deep ultraviolet through seeded degenerate four-wave mixing in stretched gas-filled hollow capillary fibers. Pumping and seeding with circularly polarized 35 fs pulses centered at 400 nm and 800 nm, respectively, we generate idler pulses centered at 266 nm with 27 µJ of energy and over 95% spectrally averaged ellipticity. Even higher idler energies and broad spectra (27 nm bandwidth) can be obtained at the cost of reduced ellipticity. Our system can be scaled in average power and used in different spectral regions, including the vacuum ultraviolet.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultrafast circularly polarized pulses tunable from the vacuum to deep ultraviolet

Athanasios Lekosiotis, Christian Brahms, Federico Belli, Teodora F. Grigorova, and John C. Travers
Opt. Lett. 46(16) 4057-4060 (2021)

Highly efficient deep UV generation by four-wave mixing in gas-filled hollow-core photonic crystal fiber

Federico Belli, Amir Abdolvand, John C. Travers, and Philip St. J. Russell
Opt. Lett. 44(22) 5509-5512 (2019)

Measurements of microjoule-level, few-femtosecond ultraviolet dispersive-wave pulses generated in gas-filled hollow capillary fibers

Cheng Zhang, Tiandao Chen, Jinyu Pan, Zhiyuan Huang, Donghan Liu, Ding Wang, Fei Yu, Dakun Wu, Yu Zheng, Ruochen Yin, Xin Jiang, Meng Pang, Yuxin Leng, and Ruxin Li
Opt. Lett. 47(18) 4830-4833 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.