Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Confocal air-coupled ultrasonic optical coherence elastography probe for quantitative biomechanics

Not Accessible

Your library or personal account may give you access

Abstract

We present an air-coupled ultrasonic radiation force probe co-focused with a phase-sensitive optical coherence tomography (OCT) system for quantitative wave-based elastography. A custom-made 1 MHz spherically focused piezoelectric transducer with a concentric 10 mm wide circular opening allowed for confocal micro-excitation of waves and phase-sensitive OCT imaging. Phantom studies demonstrated the capabilities of this probe to produce quasi-harmonic excitation up to 4 kHz for generation of elastic waves. Experimental results in ocular tissues showed highly detailed 2D and 3D elasticity mapping using this approach with great potential for clinical translation.

© 2020 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.