Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temporal and spectral coding over amplified spontaneous emission for secure optical coherent communications

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate secure optical coherent communications employing low-coherence matched detection based on the randomness of amplified spontaneous emission (ASE) noise. Two-level physical-layer optical encryption is achieved through temporal and spectral coding over a broadband ASE source. An ASE-carried signal and unmodulated carrier are polarization multiplexed, transmitted over a same single-mode fiber (SMF), and separated with the aid of polarization tracking before having matched detection at the receiving side. The impact of chromatic dispersion on the low-coherence matched detection system is analyzed and experimentally investigated. We experimentally realize optically coded 20 Gbaud QPSK and 8-PSK signals transmission over a 43 km SMF span with a maximum line rate of 60 Gbits/s.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
32 Gb/s physical-layer secure optical communication over 200 km based on temporal dispersion and self-feedback phase encryption

Zhensen Gao, Qihua Li, Lihong Zhang, Bin Tang, Ying Luo, Xulin Gao, Songnian Fu, Zhaohui Li, Yuncai Wang, and Yuwen Qin
Opt. Lett. 47(4) 913-916 (2022)

60 Gb/s coherent optical secure communication over 100 km with hybrid chaotic encryption using one dual-polarization IQ modulator

Yuqing Wu, Hanwen Luo, Lei Deng, Qi Yang, Xiaoxiao Dai, Deming liu, and Mengfan Cheng
Opt. Lett. 47(20) 5285-5288 (2022)

High spectral density transmission emulation using amplified spontaneous emission noise

Daniel J. Elson, Lidia Galdino, Robert Maher, Robert I. Killey, Benn C. Thomsen, and Polina Bayvel
Opt. Lett. 41(1) 68-71 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.