Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Strong optomechanical coupling in chain-like waveguides of silicon nanoparticles with quasi-bound states in the continuum

Not Accessible

Your library or personal account may give you access

Abstract

We propose and demonstrate that strong optomechanical coupling can be achieved in a chain-like waveguide consisting of silicon nanorods. By employing quasi-bound states in the continuum and mechanical resonances at a frequency around 10 GHz, the optomechanical coupling rate can be above 2 MHz and surpass most microcavities. We have also studied cases with different optical wave numbers and size parameters of silicon, and a robust coupling rate has been verified, benefiting the experimental measurements and practical applications. The proposed silicon chain-like waveguide of strong optomechanical coupling may pave new ways for research on photon–phonon interaction with microstructures.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Frequency conversion in nano-waveguides using bound-state-in-continuum

Xiao Xiong, Lin Wu, Ping Bai, Ching Eng Png, Jun Rong Ong, and Leonid Krivitsky
Opt. Lett. 46(2) 242-245 (2021)

Quasi-bound states in the continuum in metal complementary periodic cross-shaped resonators at terahertz frequencies

Dejun Liu, Feng Wu, Rui Yang, Lin Chen, Xiaoyong He, and Feng Liu
Opt. Lett. 46(17) 4370-4373 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved