Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Achieving extreme light confinement in low-index dielectric resonators through quasi-bound states in the continuum

Abstract

Obtaining large field enhancement in low-refractive-index dielectric materials is highly relevant to many photonic and quantum optics applications. However, confining light in these materials is challenging, owing to light leakage through coupling to continuum modes in the surrounding environment. We investigate the possibility of achieving high quality factors in low-index dielectric resonators through the bound states in the continuum (BIC). Our simulations demonstrate that destructive interference between leaky modes can be achieved by tuning the geometrical parameters of the resonator arrays, leading to the emergence of quasi-BIC in resonators that have a small index contrast to the underlying substrates. The resultant large field enhancement gives rise to giant quality factors and Purcell effects. By introducing vertical mirror symmetry, the quasi-BIC can be tuned into an ideal BIC. In addition, the quasi-BIC can modify the emission patterns of the coupled emitters, rendering highly directional and focused far-field emission. These findings may provide a path for the practical implementation of photonic and quantum devices based on low-index dielectric materials.

© 2021 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Quasi-bound states in the continuum in metal complementary periodic cross-shaped resonators at terahertz frequencies

Dejun Liu, Feng Wu, Rui Yang, Lin Chen, Xiaoyong He, and Feng Liu
Opt. Lett. 46(17) 4370-4373 (2021)

Asymmetric excitations of toroidal dipole resonance and the magnetic dipole quasi-bound state in the continuum in an all-dielectric metasurface

Bin Li, Jin Yao, Han Zhu, Guoxiong Cai, and Qing Huo Liu
Opt. Mater. Express 11(7) 2359-2368 (2021)

Low-threshold lasing from bound states in the continuum with dielectric metasurfaces

Huiwen Xue, Jiebin Niu, Shengqiong Chen, Longjie Li, Shengjie Zhao, Cheng Lu, Feng Jin, Changqing Xie, and Lina Shi
Opt. Lett. 48(24) 6480-6483 (2023)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Document

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors on reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.