Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique, capable of label-free assessment of the metabolic state and function within single cells. The FLIM measurements of autofluorescence were recently shown to be sensitive to the functional state and subtype of T cells. Therefore, autofluorescence FLIM could improve cell manufacturing technologies for adoptive immunotherapy, which currently require a time-intensive process of cell labeling with fluorescent antibodies. However, current autofluorescence FLIM implementations are typically too slow, bulky, and prohibitively expensive for use in cell manufacturing pipelines. Here we report a single photon-excited confocal whole-cell autofluorescence system that uses fast field-programmable gate array-based time tagging electronics to achieve time-correlated single photon counting (TCSPC) of single-cell autofluorescence. The system includes simultaneous near-infrared bright-field imaging and is sensitive to variations in the fluorescence decay profile of the metabolic coenzyme NAD(P)H in human T cells due to the activation state. The classification of activated and quiescent T cells achieved high accuracy and precision (area under the receiver operating characteristic curve, AUC = 0.92). The lower-cost, higher acquisition speed, and resistance to pile-up effects at high photon flux compared to traditional multiphoton-excited FLIM and TCSPC implementations with similar SNR make this system attractive for integration into flow cytometry, sorting, and quality control in cell manufacturing.
© 2021 Optical Society of America
Full Article | PDF ArticleMore Like This
Linghao Hu, Nianchao Wang, Elizabeth Cardona, and Alex J. Walsh
Biomed. Opt. Express 11(10) 5674-5688 (2020)
S. Kumar, C. Dunsby, P. A. A. De Beule, D. M. Owen, U. Anand, P. M. P. Lanigan, R. K. P. Benninger, D. M. Davis, M. A. A. Neil, P. Anand, C. Benham, A. Naylor, and P. M. W. French
Opt. Express 15(20) 12548-12561 (2007)
Ting Wu, Jiuling Liao, Jia Yu, Yufeng Gao, Hui Li, Jiarui Wu, Xianyuan Xia, Kebin Shi, and Wei Zheng
Opt. Lett. 45(10) 2704-2707 (2020)