Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Strong coupling between monolayer quantum emitter WS2 and degenerate/non-degenerate surface lattice resonances

Not Accessible

Your library or personal account may give you access

Abstract

Strong light–matter coupling manifested by Rabi splitting has drawn considerable interest owing to its fundamental significance for impressive interaction enhancement in the fields of ultrafast active plasmonic devices and quantum information. In this paper, we investigate the coherent optical properties of a plasmonic system consisting of periodic metal nanoparticle arrays covered by a WS2 thin film of atomic layer thickness. The coupling factor, energy splitting, and temporal dynamics of this coherent coupling phenomenon are quantitatively revealed by finite-difference time-domain (FDTD) simulation and a full quantum mechanical model proves that the exciton behavior of the fermionic quantum emitter WS2 is carefully modulated by bosonic surface lattice resonances. This work may pave the way for coherent modulation of polariton and plasmon devices and can potentially open up diverse exciting possibilities like nanoscale light sources, single-photon emitters, and all-optical transistors.

© 2021 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Strong interaction of quantum emitters with a WS2 layer enhanced by a gold substrate

Vasilios Karanikolas, Ioannis Thanopulos, and Emmanuel Paspalakis
Opt. Lett. 44(8) 2049-2052 (2019)

Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2

Hongju Li, Meng Qin, Yongze Ren, and Jigang Hu
Opt. Express 27(16) 22951-22959 (2019)

Strong light–matter interactions of exciton in bulk WS2 and a toroidal dipole resonance

Shaojun You, Ying Zhang, Menghui Fan, Shengyun Luo, and Chaobiao Zhou
Opt. Lett. 48(6) 1530-1533 (2023)

Supplementary Material (1)

NameDescription
Supplement 1       Supplement 1.

Data availability

Data derived from public domain resources.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved