Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Interband plasmon-enhanced optical absorption of DNA nucleobases through the graphene nanopore

Not Accessible

Your library or personal account may give you access

Abstract

We propose a novel, to the best of our knowledge, plasmonic-based methodology for the purpose of fast DNA sequencing. The interband surface plasmon resonance and field-enhancement properties of graphene nanopore in the presence of the DNA nucleobases are investigated using a hybrid quantum/classical method (HQCM), which employs time-dependent density functional theory and a quasistatic finite difference time domain approach. In the strong plasmonic–molecular coupling regime where the plasmon and DNA absorption frequencies are degenerated, the optical response of DNA molecule in the vicinity of the nanopore is enhanced. In contrast, when the plasmon and nucleobases resonances are detuned the distinct peaks and broadening of the molecular resonances represent the inherent properties of the nucleobase. Due to the different optical properties of DNA nucleobases in the ultraviolet (UV) region of light, the signal corresponding to the replacement of nucleobases in a DNA block can be determined by considering the differential absorbance. Results show the promising capability of the present mechanism for practical DNA sequencing.

© 2021 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Nano-plasmonic-based structures for DNA sequencing

Bashir Fotouhi, Vahid Ahmadi, and Vahid Faramarzi
Opt. Lett. 41(18) 4229-4232 (2016)

DNA sequencing by Förster resonant energy transfer

Bashir Fotouhi, Vahid Faramarzi, and Vahid Ahmadi
Opt. Express 30(12) 21854-21865 (2022)

Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths

Hua Lu, Benjamin P. Cumming, and Min Gu
Opt. Lett. 40(15) 3647-3650 (2015)

Data availability

Data underlying the results presented in this Letter may be obtained from the author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.