Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultracompact and ultralow-loss S-bends with easy fabrication by numerical optimization

Not Accessible

Your library or personal account may give you access

Abstract

Ultra-longitudinal-compact S-bends with flexible latitudinal distances (d) are proposed and experimentally demonstrated with ultralow loss and fabrication-friendly structures by three steps based on numerical optimization. During the first step (curve optimization), insertion losses (ILs) of S-bends are significantly reduced by optimizing transition curves based on Bézier curves. During the second step (shape optimization), the ILs are further minimized by varying the widths of S-bends to increase optical confinement. In the third step (curvature optimization), considering ease of fabrication, an optimization of curvature radius is used to ensure that all feature sizes for the S-bends are larger than 200 nm. Simulation results show that for S-bends with footprints of 2.5× d μm2, the ILs are less than (0.19, 0.045, 0.18, 0.27) dB in a wavelength range of 1400–1700 nm when d is set as (3, 6, 9, 12) μm, respectively. Then, the S-bends of 2.5× 3 μm2 and 2.5× 12 μm2 are fabricated on a commercial 220-nm silicon-on-insulator (SOI) platform. Experimental results show that the ILs of both are less than 0.16 dB in a wavelength range of 1420–1630 nm. The lowest ILs are 0.074 dB and 0.070 dB, respectively. Moreover, in addition to the ultralow ILs and ease of fabrication, our design is flexible for designing S-bends with a flexible value of d, which makes our approach practical in large-scale photonic integrated circuits.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Optimal Bezier curve transition for low-loss ultra-compact S-bends

Dan Yi, Yaojing Zhang, and Hon Ki Tsang
Opt. Lett. 46(4) 876-879 (2021)

Low loss modified Bezier bend waveguide

Tianyu Sun and Mingjun Xia
Opt. Express 30(7) 10293-10305 (2022)

Robust, ultralow-loss, and broadband light-recycling for a nanophotonic delay line

Young-Seo Koh, Xiao Xiong, and Young-Ik Sohn
Opt. Lett. 47(9) 2330-2333 (2022)

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental contents for "cuve optimization" and "curvature optimization"

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved