Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Distributed fiber optic sensing with enhanced sensitivity based on microwave-photonic Vernier effect

Not Accessible

Your library or personal account may give you access

Abstract

The Vernier effect has been widely used in the field of measurement and instrumentation for sensitivity enhancement. Single-point optical fiber sensors based on the Vernier effect have been extensively reported in recent years. In this Letter, for the first time, a distributed optical fiber sensor based on microwave photonics with improved sensitivity enabled by the Vernier effect is demonstrated. Distributed sensing is realized by interrogating a Fabry–Perot interferometer (FPI) array formed by cascaded reflectors along an optical fiber using an optical carrier-based microwave interferometry (OCMI) system. A reference FPI is also included in the system. The interferogram of each of the sensing FPIs can be unambiguously reconstructed and superimposed with the reconstructed interferogram of the reference FPI to generate the Vernier effect. By tracking the spectral shift of the envelope signals in the superimposed spectra, the measurement sensitivities of the sensing FPIs can be significantly improved. A simple direct modulation-based OCMI system is used in the proof-of-concept demonstration, showing sensitivity-enhanced distributed sensing capability. Moreover, the sensitivity amplification factor can be adjusted by varying the optical length difference of the sensing and reference FPIs, similar to that of Vernier effect-based single-point optical fiber sensors.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
High-sensitivity optical fiber sensing based on a computational and distributed Vernier effect

Chen Zhu and Jie Huang
Opt. Express 30(21) 37566-37578 (2022)

Sensitivity-enhanced microwave-photonic optical fiber interferometry based on the Vernier effect

Chen Zhu and Jie Huang
Opt. Express 29(11) 16820-16832 (2021)

Supplementary Material (1)

NameDescription
Supplement 1       Supplement 1

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.