Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental demonstration of a “pin-like” low-divergence beam in a 1-Gbit/s OOK FSO link using a limited-size receiver aperture at various propagation distances

Abstract

In free-space optical (FSO) communications, there are scenarios (e.g., from a ground station to a drone/airplane) in which: (i) the transmitter (Tx) can have a relatively large aperture whereas the receiver (Rx) aperture should preferably be much smaller, and (ii) the distance between the Tx and Rx can vary such that beam divergence will cause a variation in the recovered signal power. In such cases, transmission using a fundamental Gaussian beam can be significantly degraded due to beam truncation caused by a limited-size Rx aperture. Here, we experimentally demonstrate a 1-Gbit/s on-off keying (OOK) FSO transmission link using a structured “pin-like” beam with a limited-size Rx aperture at various distances. The pin-like beam is generated by passing a Gaussian beam through an “Airy-type” phase pattern in the radial direction. When propagating, this structured beam first narrows and then tends to maintain its narrow beam size over a fairly wide range of distances. In comparison to its Gaussian counterpart, our experimental results show that the pin-like beam has ∼13 to 8 dB less power loss at distances ranging from 0.45 m to 0.8 m with an Rx aperture diameter of 1 mm. Moreover, we simulate the propagation of the pin-like beam and show its relatively lower power loss for a wide distance variation in a longer link (e.g., ∼1 km) with a limited-size Rx aperture. Furthermore, our results show that the pin-like beam can have a wider range of low-power-loss distances than a Gaussian beam that is focused to a given distance.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Demonstration of using two aperture pairs combined with multiple-mode receivers and MIMO signal processing for enhanced tolerance to turbulence and misalignment in a 10 Gbit/s QPSK FSO link

Haoqian Song, Long Li, Kai Pang, Runzhou Zhang, Kaiheng Zou, Zhe Zhao, Jing Du, Hao Song, Cong Liu, Yinwen Cao, Ari N. Willner, Ahmed Almaiman, Robert Bock, Brittany Lynn, Moshe Tur, and Alan E. Willner
Opt. Lett. 45(11) 3042-3045 (2020)

Experimental mitigation of the effects of the limited size aperture or misalignment by singular-value-decomposition-based beam orthogonalization in a free-space optical link using Laguerre–Gaussian modes

Kai Pang, Haoqian Song, Xinzhou Su, Kaiheng Zou, Zhe Zhao, Hao Song, Ahmed Almaiman, Runzhou Zhang, Cong Liu, Nanzhe Hu, Shlomo Zach, Nadav Cohen, Brittany Lynn, Andreas F. Molisch, Robert W. Boyd, Moshe Tur, and Alan E. Willner
Opt. Lett. 45(22) 6310-6313 (2020)

Demonstration of turbulence mitigation in a 200-Gbit/s orbital-angular-momentum multiplexed free-space optical link using simple power measurements for determining the modal crosstalk matrix

Nanzhe Hu, Haoqian Song, Runzhou Zhang, Huibin Zhou, Cong Liu, Xinzhou Su, Hao Song, Kai Pang, Kaiheng Zou, Brittany Lynn, Moshe Tur, and Alan E. Willner
Opt. Lett. 47(14) 3539-3542 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.