Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

All-optical, tunable, V- and W-band microwave generation using semiconductor lasers at period-one nonlinear dynamics with asymmetric mutual injection stabilization

Not Accessible

Your library or personal account may give you access

Abstract

This study investigates an optically injected semiconductor laser operating at period-one nonlinear dynamics for all-optical microwave generation. A novel, to the best of our knowledge, all-optical stabilization scheme is proposed to greatly enhance the spectral purity of such generated microwaves, which sends a small fraction of the injected laser output back to the injecting laser, not the injected laser itself. Mutual injection with highly different injection power between the two lasers, i.e., highly asymmetric mutual injection, is thus formed. As a result, the microwave linewidth is reduced by up to at least 85 times, the phase noise variance is improved by up to at least 750 times, and a side-peak suppression ratio of more than 44 dB is achieved. Microwave generation that is tunable up to at least 110 GHz with a 3-dB linewidth down to below 2 kHz is realized.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Frequency-modulated continuous-wave microwave generation using stabilized period-one nonlinear dynamics of semiconductor lasers

Chin-Hao Tseng, Yu-Han Hung, and Sheng-Kwang Hwang
Opt. Lett. 44(13) 3334-3337 (2019)

V- and W-band microwave generation and modulation using semiconductor lasers at period-one nonlinear dynamics

Chin-Hao Tseng, Chun-Ting Lin, and Sheng-Kwang Hwang
Opt. Lett. 45(24) 6819-6822 (2020)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.