Abstract

In this work, a GaN-based UV photodetector with an asymmetric electrode structure was fabricated by atomic layer deposition (ALD) of TiN layers. The thickness of the TiN can be monitored in situ by a quartz crystal microbalance (QCM) and precisely controlled through the modulation of deposition cycles. During the ALD process, periodic variation in the QCM frequency was observed and correlated to the physical adsorption, chemical bonding, and the excessive precursor exhaust, which included tetrakis(dimethylamino)titanium (TDMAT) and N sources. The asymmetric TiN/GaN/TiN photodetector showed excellent photosensing performance, with a UV-visible rejection ratio of 173, a responsivity of 4.25 A/W, a detectivity of 1.1×1013 Jones, and fast response speeds (a rise time of 69 μs and a decay time of 560 μs). Moreover, the device exhibits high stability, with an attenuation of only approximately 0.5% after 360 nm light irradiation for 157 min. This result indicates the potential of TiN as a transparent contact electrode for GaN-based optoelectronic devices.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Multiple-polarization-sensitive photodetector based on a perovskite metasurface

Cheng-Yao Li, Chaowei Chen, Yu Liu, Jing Su, Dong-Xiang Qi, Jie He, Ren-Hao Fan, Qing Cai, Qingxuan Li, Ruwen Peng, Xian-Rong Huang, and Mu Wang
Opt. Lett. 47(3) 565-568 (2022)

Ultra-thin sputter-deposited infrared rugate mirror for enhancing solar-to-thermal energy conversion

Daniela De Luca, David Kortge, Emiliano Di Gennaro, Roberto Russo, and Peter Bermel
Opt. Lett. 47(2) 230-233 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Document

Data availability

Data underlying the results presented in this paper are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription